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Abstract

We present a new well-balanced finite volume method within the framework of the finite volume evolution Galerkin
(FVEG) schemes. The methodology will be illustrated for the shallow water equations with source terms modelling the
bottom topography and Coriolis forces. Results can be generalized to more complex systems of balance laws. The FVEG
methods couple a finite volume formulation with approximate evolution operators. The latter are constructed using the
bicharacteristics of multidimensional hyperbolic systems, such that all of the infinitely many directions of wave propaga-
tion are taken into account explicitly. We derive a well-balanced approximation of the integral equations and prove that
the FVEG scheme is well-balanced for the stationary steady states as well as for the steady jets in the rotational frame.
Several numerical experiments for stationary and quasi-stationary states as well as for steady jets confirm the reliability
of the well-balanced FVEG scheme.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Consider the balance law in two space dimensions
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ut þ f 1ðuÞx þ f 2ðuÞy ¼ bðu; x; yÞ; ð1:1Þ
where u is the vector of conservative variables, f1, f2 are flux functions and b(u,x,y) is a source term. In this
paper we are concerned with the finite volume evolution Galerkin (FVEG) method of Lukáčová, Morton and
Warnecke, cf. [15,22–29]. The FVEG methods couple a finite volume formulation with approximate evolution
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operators which are based on the theory of bicharacteristics for the first order systems [23]. As a result exact
integral representations for solutions of linear or linearized hyperbolic conservation laws can be derived,
which take into account all of the infinitely many directions of wave propagation.

In the finite volume framework the approximate evolution operators are used to evolve the solution along
the cell interfaces up to an intermediate time level tn+1/2 in order to compute fluxes. This step can be consid-
ered as a predictor step. In the corrector step the finite volume update is done. The FVEG schemes have been
studied theoretically as well as experimentally with respect to their stability and accuracy. Extensive numerical
experiments confirm robustness, good multidimensional behaviour, high accuracy, stability, and efficiency of
the FVEG schemes, see Section 5 and also references [26,27]. We refer the reader to [1,3,7–9,16,19,30] for other
recent multidimensional schemes.

For balance laws with source terms, the simplest approach is to use the operator splitting method which
alternates between the homogeneous conservation laws
ut þ f 1ðuÞx þ f 2ðuÞy ¼ 0
and the ordinary differential equation
ut ¼ bðu; x; yÞ

at each time step. For many situations this would be effective and successful. However, the original problem
(1.1) has an interesting structure, which is due to the interplay between the differential terms and the right-
hand side source term during the time evolution. For many flows which are of interest in geophysics, the terms
are nearly perfect balanced. If these terms are treated separately in a numerical algorithm, the fundamental
balance may be destroyed, resulting in spurious oscillations. In particular, we will be interested in approximat-
ing correctly equilibrium states or steady states, for which
f 1ðuÞx þ f 2ðuÞy ¼ bðu; x; yÞ;
and we want to approximate perturbations of such equilibrium states. Equilibrium solutions play an impor-
tant role because they are obtained usually as a limit when time tends to infinity.

In this paper we present an approach which allows to incorporate treatment of the source in the framework
of the FVEG schemes without using the operator splitting approach. The key ingredient is a new approximate
representation of the multidimensional solution which contains the full balance of the hydrostatic pressure
and the source terms, see Lemma 3.2. This new representation allows to apply a recent non-standard quad-
rature rule (see (3.21) and also [27]) to the mantle integrals of the bicharacteristic cone. This leads to a surpris-
ingly simple, accurate and efficient approximate evolution operator and hence to an efficient, accurate and
well-balanced finite volume scheme. We call our scheme the well-balanced finite volume evolution Galerkin

scheme (FVEG). We refer the reader to [2,4,5,10,12,17,20,31,13,34] and the references therein for other related
approaches for well-balanced finite volume and finite difference schemes.

Our paper is organized as follows. In Section 2 we introduce the shallow water equations in a rotating
frame, derive a class of equilibria which contains the lake at rest, jets in the rotating frame and combinations
of these two solutions. Then we introduce the class of two-step finite volume schemes used throughout the
paper. In Theorem 2.1 we give sufficient conditions which guarantee well-balancing. Section 3 is devoted to
the EG (evolution Galerkin) predictor step. Applying the theory of bicharacteristics for multidimensional first
order systems of hyperbolic type the exact evolution operator is derived. A well-balanced approximation of
the exact evolution operator, which preserves some interesting steady states exactly and also works well for
their perturbations, is given in Lemma 3.2 and Eqs. (3.25), (3.26). In Theorem 3.1 we prove that the FVEG
scheme is well-balanced for the stationary steady states (e.g. lake at rest), for the steady jets on the rotating
plane as well as for combinations of these two flows. In Section 4 we summarize the main steps of the FVEG
method and present its algorithm. Numerical experiments for one- and two-dimensional stationary and quasi-
stationary problems as well as for steady jets presented in Section 5 confirm reliability of the well-balanced
FVEG scheme. We also compare the accuracy and runtime of the new FVEG scheme with that of the recent
high order well-balanced WENO FV schemes of Audusse et al. [2] and Noelle et al. [31]. The question of pos-
itivity preserving property of the scheme, i.e. h > 0, is not yet considered here and will be addressed in our
future paper.
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2. Geophysical equilibria and well-balanced two-step finite volume schemes

2.1. The shallow water equations

There are many practical applications where the balance laws and the correct approximation of their quasi-
steady states are necessary. Some example include shallow water equations with the source term modelling the
bottom topography, which arise in oceanography and atmospheric science, gas dynamic equations with geo-
metrical source terms, e.g. a duct with variable cross-section, or fluid dynamics with gravitational terms. In
what follows we illustrate the methodology on the example of the shallow water equations with the source
terms modelling the bottom topography and the Coriolis forces. This system reads
ut þ f 1ðuÞx þ f 2ðuÞy ¼ bðuÞ; ð2:1Þ
where
u ¼
h

hu

hv

0
B@

1
CA; f 1ðuÞ ¼

hu

hu2 þ 1
2
gh2

huv

0
B@

1
CA;

f 2ðuÞ ¼
hv

huv

hv2 þ 1
2
gh2

0
B@

1
CA; bðuÞ ¼

0

�ghbx þ fhv

�ghby � fhu

0
B@

1
CA:
Here h denotes the water depth, u,v are vertically averaged velocity components in x- and y-directions, g

stands for the gravitational constant, f is the Coriolis parameter, and b(x,y) denotes the bottom topography.
Note that these equations are also used in climate modelling and meteorology for geostrophic flow, see, e.g.

[4,14]. For simulation of river or oceanographic flows some additional terms modelling the bottom friction
need to be considered as well.

2.2. Equilibria

Many geophysical flows are close to equilibrium, or stationary state. It is easiest to identify these states
when the system is written in primitive variables,
wt þ A1ðwÞwx þ A2ðwÞwy ¼ tðwÞ; ð2:2Þ

w ¼
h

u

v

0
B@

1
CA; A1 ¼

u h 0

g u 0

0 0 u

0
B@

1
CA; A2 ¼

v 0 h

0 v 0

g 0 v

0
B@

1
CA; t ¼

0

�gbx þ fv

�gby � fu

0
B@

1
CA: ð2:3Þ
Here we consider states which are both stationary,
ðh; u; vÞt ¼ 0; ð2:4Þ

and constant along streamlines,
ð _h; _u; _vÞ ¼ 0; ð2:5Þ

where _ ¼ ot þ uox þ voy is the material derivative. For such states, we obtain
uhx þ vhy ¼ uux þ vuy ¼ uvx þ vvy ¼ 0: ð2:6Þ

Since the velocity vector is now constant along the streamlines, these become straight lines. It is then nat-

ural to align the coordinates with the streamlines. The desired solution has to satisfy the conditions
u ¼ 0; ð2:7Þ
vy ¼ 0; ð2:8Þ
vhy ¼ 0; ð2:9Þ
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gðhþ bÞx ¼ fv; ð2:10Þ
gðhþ bÞy ¼ 0: ð2:11Þ
In the region {(x,y)|v(x) = 0} we obtain the lake at rest solution, where the water level h + b is flat. When
v(x) 6¼ 0, we must have hy = 0 and hence by = 0. Hence the topography is locally one-dimensional, and along
the rise of the bottom we have a one-dimensional flow. This solution, which is well-known to oceanographers,
is called the jet in the rotational frame. Due to the earths rotation the jet exerts a sidewards pressure fv onto the
water, which is balanced by a raise in the water level g(h + b)x. In meteorological literature this state is also
called the geostrophic equilibrium.

For future reference we also define the primitive (U,V) of the Coriolis force, as introduced by Bouchut et al.
in [2], via
V x ¼
f
g

v and U y ¼
f
g

u ð2:12Þ
and the potential energies
K :¼ gðhþ b� V Þ and L :¼ gðhþ bþ UÞ: ð2:13Þ
2.3. Two-step finite volume schemes

The FVEG (finite volume evolution Galerkin) scheme which we propose for the balance laws are time-
explicit two-step schemes, similarly as Richtmyer’s two-step version of the Lax–Wendroff scheme [32] and Col-
ella’s CTU (corner transport upwind) scheme [6].

The first step, called predictor step, evolves the point value at a quadrature node to the half-timestep. This
can be done by a simple finite difference operator as in [32], by one-dimensional characteristic theory as in [6]
or by fully multidimensional, bicharacteristic theory as in [25] and related works of Lukáčová et al. Our pre-
dictor step is based on this bicharacteristic theory.

The second step is the standard finite volume update. It approximates the flux integral across the interfaces
by a quadrature of the fluxes evaluated at the predicted states at the half-timestep.

We proceed as follows: in the present section we study the finite volume step (i.e. the second of the two
steps). This will give us sufficient conditions for well-balancing which should be satisfied by the values com-
puted in the predictor step (the first step). In Section 3.1 we will introduce the evolution Galerkin predictor
step and prove that it satisfies the sufficient conditions derived in the present section.

In order to define the class of two step finite volume schemes, let us divide a computational domain X into a
finite number of regular finite volumes Xij ¼ ½xi�1

2
; xiþ1

2
� � ½yj�1

2
; yjþ1

2
� ¼ ½xi � �h=2; xi þ �h=2� � ½yj � �h=2; yj þ �h=2�;

i; j 2 Z, where �h is the mesh size. Denote by Un
ij the piecewise constant approximate solution on a mesh cell Xij

at time tn and start with initial approximations obtained by the integral averages U0
ij ¼

R
Xij

Uð�; 0Þ. Integrating

the balance law (2.1) and applying the Gauss theorem on any mesh cell Xij yields the following finite volume
update formula
Unþ1
ij ¼ Un

ij � k
X2

k¼1

dij
xk

�f
nþ1=2
k þ kB

nþ1=2
ij ; ð2:14Þ
where k = Dt/�h, Dt is a time step, dij
xk

stands for the central difference operator in the xk-direction, k = 1,2 and
�f

nþ1=2
k represents an approximation to the edge flux at the intermediate time level tn + Dt/2. Further B

nþ1=2
ij

stands for the approximation of the source term multiplied with the mesh size, �hb. The cell interface fluxes
�f

nþ1=2
k are evolved using an approximate evolution operator denoted by EDt/2 to tn + Dt/2 and averaged along

the cell interface edge denoted by E,
�f
nþ1=2
k :¼

X
j

xjf kðEDt=2UnðxjðEÞÞÞ: ð2:15Þ
Here xjðEÞ are the nodes and xj the weights of the quadrature for the flux integration along the edges.
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For simplicity, we introduce the following notation. Along the edges, we have quadrature nodes ðxi�1
2
; yjþj0 Þ

resp. ðxiþi0 ; yj�1
2
Þ, where i0; j0 2 f0;� 1

2
g. These nodes are already sufficient for the midpoint, the trapezoidal and

Simpson’s rule. We denote the values given at the predictor step by
ĥ

û

v̂

0
B@

1
CA

i�1
2;jþj0

:¼
h

u

v

0
B@

1
CA

nþ1
2

i�1
2;jþj0

and

ĥ

û

v̂

0
B@

1
CA

iþi0 ;j�1
2

:¼
h

u

v

0
B@

1
CA

nþ1
2

iþi0;j�1
2

ð2:16Þ
and the corresponding fluxes in x resp. y-direction by
f̂ 1
i�1

2;jþj0 :¼ f 1ððĥ; û; v̂Þi�1
2;jþj0 Þ; ð2:17Þ

f̂ 2
iþi0 ;j�1

2
:¼ f 2ððĥ; û; v̂Þiþi0 ;j�1

2
Þ: ð2:18Þ
With this notation, we obtain
dij
x1

�f
nþ1=2
1 ¼

X
j0

xj0d
i;jþj0

x1
f̂ 1

i;jþj0 ; ð2:19Þ

dij
x2

�f
nþ1=2
2 ¼

X
i0

xi0d
iþi0 ;j
x2

f̂ 2
iþi0;j: ð2:20Þ
Finally, we discretize the source term by
B
nþ1

2
ij ¼ �g

0P
j0

xj0 ðli;jþj0
x1

ĥi;jþj0 Þðdi;jþj0

x1
ðb̂� V̂ Þi;jþj0 ÞP

i0
xi0 ðliþi0;j

x2
ĥiþi0;jÞðdiþi0 ;j

x2
ðb̂þ ÛÞiþi0 ;jÞ

0
BBBB@

1
CCCCA: ð2:21Þ
Here U and V are the discrete primitives of the Coriolis forces (see (2.12)), defined by
di;jþj0

x1
V̂ i;jþj0 ¼ �h

f
g

li;jþj0

x1
v̂i;jþj0 ; ð2:22Þ

diþi0;j
x2

Û iþi0 ;j ¼ �h
f
g

liþi0 ;j
x2

ûiþi0 ;j; ð2:23Þ
and we have used the average operators
lij
x1

a ¼ ðaiþ1=2;j þ ai�1=2;jÞ=2;

lij
x2

a ¼ ðai;jþ1=2 þ ai;j�1=2Þ=2:
The following theorem states conditions which guarantee that the two-step finite volume scheme (2.14) and
(2.15) is well-balanced for the lake at rest as well as for the jet in the rotating frame.

Theorem 2.1. Suppose that the values ðĥ; û; v̂Þ given by predictor step satisfy for all i, j, i 0, j 0
ûi;jþj0 ¼ 0; ð2:24Þ
diþi0;j

y v̂iþi0;j ¼ 0; ð2:25Þ
v̂iþi0;jd

iþi0;j
y ĥiþi0;j ¼ 0; ð2:26Þ

di;jþj0

x K̂i;jþj0 ¼ 0; ð2:27Þ
diþi0;j

y ðĥiþi0;j þ biþi0 ;jÞ ¼ 0; ð2:28Þ

where K is defined in (2.13). Then the finite volume scheme preserves the lake at rest and the jet in the rotating

frame.

Proof. Since this argument is already standard for the lake at rest, we only sketch it briefly for the jet in the
rotating frame. Let us study conservation of momentum in the y-direction over cell Xij. Using (2.24)–(2.26),
(2.28), and the discrete product rule
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dðâb̂Þ ¼ dðâÞlðb̂Þ þ lðâÞdðb̂Þ ð2:29Þ

it is straightforward to show that the sum of the flux differences and the source term vanishes:
ðhvÞnþ1
ij � ðhvÞnij ¼

X
j0

xj0d
i;jþj0

x ðĥûv̂Þ þ
X

i0
xi0 diþi0 ;j

y ðĥv̂2 þ g
2

ĥ2Þ þ gðliþi0;j
y ĥÞdiþi0;j

y ðbþ ÛÞ
� �

: ð2:30Þ
Now ûi�1
2;jþj0 ¼ 0, and
diþi0 ;j
y ðĥv̂2Þ ¼ diþi0 ;j

y ðĥv̂Þliþi0;j
y v̂þ liþi0 ;j

y ðĥv̂Þdiþi0 ;j
y v̂¼ diþi0;j

y ĥðliþi0;j
y v̂Þ2þ liþi0 ;j

y ĥdiþi0 ;j
y v̂liþi0 ;j

y v̂þ liþi0 ;j
y ðĥv̂Þdiþi0 ;j

y v̂¼ 0
Dropping the corresponding terms in (2.30), we obtain
ðhvÞnþ1
ij � ðhvÞnij ¼

X
i0

xi0 ðliþi0 ;j
y ĥÞdiþi0 ;j

y gðĥþ bþ ÛÞ ¼
X

i0
xi0 ðliþi0 ;j

y ĥÞdiþi0 ;j
y L̂ ¼ 0:
This is the desired well-balanced property for the y-momentum. The x-momentum and the balance of mass
can be treated analogously. h
3. The well-balanced approximate evolution operators

The predictor step in the FVEG scheme will be based on exact and approximate integral representations of
solutions to the linearized shallow water equations. We begin this section by formulating the exact integral
representation. A few clarifying remarks should help the reader to understand the structure of this representa-
tion. Details of the derivation are given in Appendix A. We proceed to derive two approximate integral repre-
sentations. For the first order scheme the approximate evolution operator Econst

Dt=2 for the piecewise constant data
is used. For the second order method the continuous bilinear recovery R is applied. In the case of discontinuous
solutions slopes in R are limited yielding a discontinuous piecewise bilinear recovery R, cf. Section 4 as well as
[26]. The predicted solution at the quadrature nodes on the cell interfaces at the half timestep is obtained by a
suitable combination of Econst

D and Ebilin
D ,
EDt=2Un :¼ Ebilin
Dt=2RUn þ Econst

Dt=2 ð1� l2
xl

2
yÞUn; ð3:1Þ
where l2
xUij ¼ 1=4ðU iþ1;j þ 2U ij þ U i�1;jÞ; an analogous notation is used for the y-direction. It has been shown

in [27] that the combination (3.1) yields the best results with respect to accuracy as well as stability among
other possible second order FVEG schemes. It is particularly important that the constant evolution term
Econst

Dt=2 ð1� l2
xl

2
yÞU

n corrects the conservativity of the bilinear recovery and hence of the intermediate solutions
along cell-interfaces. If it is not used the scheme is second order formally, but unconditionally unstable, cf. the
FVEG-B scheme [27].

Finally, we show that approximate evolution operators lead to well-balanced two-step finite volume
schemes for the lake at rest and the jet in the rotational frame.

3.1. Exact integral representation

We believe that the most satisfying methods for evolutionary problems are based on the approximation of
evolution operator or at least its dominant part. For the two-step FVEG method, we use two fundamental
evolution operators. One of the steps is the classical finite volume update for the cell averages and uses the
integral form of the conservation law. Its well-balanced properties have been established in Theorem 2.1.
The other step, which precedes the finite volume update, is needed to predict point values in order to evaluate
fluxes on cell interfaces. It is here that the classical bicharacteristic theory comes into play. It provides exact
integral formulae for point values of solutions to multidimensional hyperbolic systems.

Let P :¼ (x,y, tn+1/2) be one of the quadrature points where the finite volume fluxes will be evaluated, and
let ~w ¼ ð~h; ~u;~vÞ be a suitable local average of the solution around P. We will derive an exact integral represen-
tation of the solution of the linearized shallow water equation at P. Similarly as in (2.2), the linearized system
in primitive variables reads
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wt þ A1ð~wÞwx þ A2ð~wÞwy ¼ tðwÞ; ð3:2Þ

where the Jacobian matrices A1 and A2 are defined in (2.3).

The homogeneous part of (3.2) yields a hyperbolic system. Fix a direction angle h with corresponding unit
normal vector (cosh, sinh). The matrix pencil A � Að~wÞ ¼ cos hA1 þ sin hA2 has three eigenvalues
k1 ¼ cos h~uþ sin h~v� ~c;

k2 ¼ cos h~uþ sin h~v;

k3 ¼ cos h~uþ sin h~vþ ~c;
and a full set of right eigenvectors
r1 ¼
�1

g cos h=~c

g sin h=~c

0
B@

1
CA; r2 ¼

0

sin h

� cos h

0
B@

1
CA; r3 ¼

1

g cos h=~c

g sin h=~c

0
B@

1
CA;
where c ¼
ffiffiffiffiffi
gh
p

denotes the wave celerity. The eigenvalues k1,3 correspond to fast waves, the so-called inertia-
gravity waves, whereas slow modes are related to k2. Analogously to the gas dynamics the Froude number
Fr = |u|/c plays an important role in the classification of shallow flows. The shallow flow is called supercritical,
critical or subcritical for Fr > 1, Fr = 1, and Fr < 1, respectively.

Applying the theory of bicharacteristics to the linearized system (3.2) yields an exact integral representation
of the solution. Since the computations are closely related to [27], we summarize the key steps only briefly and
refer to Appendix A for further details.

� Fix a point P ¼ ðx; y; tn þ sÞ; s ¼ Dt
2
.

For each spatial direction (cos(h), sin(h)), h 2 [0,2p) apply the corresponding one-dimensional characteristic
decomposition to two-dimensional system (3.2).
� Integrate the resulting equations along each bicharacteristic curve from time tn to time tn + s.
� Integrate the resulting equations over all direction angles h. This gives a representation formula for the

solution at the point P.

The EG integral representation derived in Appendix A then reads, cf. (A.5)–(A.7)
hðP Þ ¼ 1

2p

Z 2p

0

hðQÞ � ~c
g
ðuðQÞ cos hþ vðQÞ sin hÞ dh

� 1

2p

Z tnþs

tn

1

tn þ s�~t

Z 2p

0

~c
g
ðuð~QÞ cos hþ vð~QÞ sin hÞ dh d~t

þ 1

2p
~c
Z tnþs

tn

Z 2p

0

ðbxð~QÞ cos hþ byð~QÞ sin hÞ dh d~t

� 1

2p
~cf
g

Z tnþs

tn

Z 2p

0

ðvð~QÞ cos h� uð~QÞ sin hÞ dh d~t; ð3:3Þ

uðP Þ ¼ 1

2
uðQ0Þ þ

1

2p

Z 2p

0

� g
~c

hðQÞ cos hþ uðQÞ cos2 hþ vðQÞ sin h cos h dh

� g
2

Z tnþs

tn

ðhxð~Q0Þ þ bxð~Q0ÞÞ d~t � g
2p

Z tnþs

tn

Z 2p

0

ðbxð~QÞ cos2 hþ byð~QÞ sin h cos hÞ dh d~t

þ 1

2p

Z tnþs

tn

1

tn þ s�~t

Z 2p

0

ðuð~QÞ cos 2hþ vð~QÞ sin 2hÞ dh d~t

þ f
2

Z tnþs

tn

vð~Q0Þ d~t þ f
2p

Z tnþs

tn

Z 2p

0

ðvð~QÞ cos2 h� uð~QÞ sin h cos hÞ dh d~t; ð3:4Þ
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vðPÞ ¼ 1

2
vðQ0Þ þ

1

2p

Z 2p

0

� g
~c

hðQÞ sin hþ uðQÞ sin h cos hþ vðQÞ sin2 h dh

� g
2

Z tnþs

tn

ðhyð~Q0Þ þ byð~Q0ÞÞ d~t � g
2p

Z tnþs

tn

Z 2p

0

ðbxð~QÞ sin h cos hþ byð~QÞ sin2 hÞ dh d~t

þ 1

2p

Z tnþs

tn

1

tn þ s�~t

Z 2p

0

ðuð~QÞ sin 2h� vð~QÞ cos 2hÞ dh d~t � f
2

Z tnþs

tn

uð~Q0Þ d~t

þ f
2p

Z tnþs

tn

Z 2p

0

ðvð~QÞ sin h cos h� uð~QÞ sin2 hÞ dh d~t: ð3:5Þ
Evolution takes place along the bicharacteristic cone, see Fig. 1, where P = (x,y,tn + s) is the peak of
the bicharacteristic cone, Q0 ¼ ðx� ~us; y � ~vs; tnÞ denotes the center of the sonic circle at time tn,
~Q0 ¼ ðx� ~uðtn þ s�~tÞ; y � ~vðtn þ s�~tÞ;~tÞ, ~Q ¼ ðx� ~uðtn þ s�~tÞ þ cðtn þ s�~tÞ cos h; y � ~vðtn þ s�~tÞþ
cðtn þ s�~tÞ sin h;~tÞ stays for arbitrary point on the mantle and Q ¼ Qð~tÞj~t¼tn

denotes a point at the perimeter
of the sonic circle at time tn.

At first view, it may seem difficult to interpret the terms in (3.3)–(3.5). However, even if one is not familiar
with bicharacteristic theory, there is a simple explanation of all terms, which we sketch in the following
paragraph.

3.2. A simple interpretation of the EG integral representation

Our interpretation of the EG integral representation is based on a comparison with the approximate rep-
resentation of the solution which results from a Taylor expansion along the streamlines.

The streamlines of the linearized shallow water equations are given by fðxðtÞ; yðtÞ; tÞj _x ¼ ~u; _y ¼ ~vg. As in

Section 2.2, let _u :¼ ut þ ~uux þ ~vuy be the material derivative of a function u : D! R.
Then the linearized shallow water equations (3.1) reduce to
_h ¼ �~hðux þ vyÞ; ð3:6Þ
_u ¼ �Kx; ð3:7Þ
_v ¼ �Ly : ð3:8Þ
This implies that
€h ¼ �~hð _ux þ _vyÞ ¼ ~hðKxx þ LyyÞ; ð3:9Þ
€u ¼ � _Kx ¼ g~hðux þ vyÞx � gð~ubx þ ~vbyÞx þ fLy ; ð3:10Þ
€v ¼ � _Ly ¼ g~hðux þ vyÞy � gð~ubx þ ~vbyÞy � fKx; ð3:11Þ
so the exact solution derived in (3.3)–(3.5) can be approximated (up to OðDt3Þ) by
Fig. 1. Bicharacterestics cone.
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h1

u1

v1

0
B@

1
CA :¼

h

u

v

0
B@

1
CA

Q0

� s

~hðux þ vyÞ
Kx

Ly

0
B@

1
CA

Q0

þ s2

2

~hðKxx þ LyyÞ
g~hðux þ vyÞx � gð~ubx þ ~vbyÞx þ fLy

g~hðux þ vyÞy � gð~ubx þ ~vbyÞy � fKx

0
BB@

1
CCA

Q0

: ð3:12Þ
Now we will indicate how to compare the RHS of the integral representation (3.3)–(3.5) with that of (3.12).
We will show that they agree up to terms of OðDt3Þ. For this we need the following Taylor expansions on the
sonic circle and the bicharacteristic cone. For simplicity we introduce the notation
a :¼ cos h; b :¼ sin h:
Lemma 3.1 (Taylor expansions on the sonic circle and the bicharacteristic cone). Let u : Cmþ1ðD; RÞ and

u0 :¼ u(Q0), ~u0 :¼ uð~Q0Þ. Then
1

2p

Z 2p

0

ambnudh ¼
Xkþl6m

k;l¼0

1
2p

R 2p
0

akþmblþn dh

k!l!
ð~csÞkþl

o
k
xo

l
yu0 þ OðDtmþ1Þ; ð3:13Þ

1

2ps

Z tnþs

tn

Z 2p

0

ambnu dh d~t ¼
Xkþl6m

k;l¼0

1
2p

R 2p
0

akþmblþn dh

k!l!
1

s

Z tnþs

tn

ð~cðtn þ s�~tÞÞkþl
o

k
xo

l
y ~u0 d~t þ OðDtmþ1Þ:

ð3:14Þ

Moreover, 1

2p

R 2p
0

akþmblþn dh ¼ 0 if either k or l are odd integers, and
1

2p

Z 2p

0

a2 dh ¼ 1

2p

Z 2p

0

b2 dh ¼ 1

2
; ð3:15Þ

1

2p

Z 2p

0

a4 dh ¼ 1

2p

Z 2p

0

b4 dh ¼ 3

8
; ð3:16Þ

1

2p

Z 2p

0

a2b2 dh ¼ 1

8
: ð3:17Þ
Proof. The proof can be obtained by a direct evaluation. h

Using this Taylor expansion together with appropriate smoothness assumptions it is an elementary exercise
to prove that
h1

u1

v1

0
B@

1
CA ¼

h

u

v

0
B@

1
CAðP Þ þ OðDt3Þ: ð3:18Þ
3.3. Approximate evolution operators

In the previous section, we could give the integral representation (3.3)–(3.5), a straightforward interpreta-
tion by deriving it from a Taylor expansion along the streamlines.

However, it would be far too expensive to evaluate (3.3)–(3.5), at each quadrature node of the two-step
finite volume scheme. In the present section we derive the crucial approximations of (3.3)–(3.5), leading to
an efficient and accurate algorithm.This approximation comes in two steps. First we derive in Lemma 3.2 a
suitable approximation, which contains all terms necessary for the balance between the pressure terms and
the sources, i.e. Kx = 0 = Ly. This approximation is still continuous. Afterwards, we apply a special numerical
quadrature to approximate the mantle integrals (i.e. time dependent integrals), in order to obtain approximate
evolution operators which are explicit in time.

For the present paper, we are interested in second order schemes. It is therefore sufficient that the predictor
steps is first order accurate, i.e. accurate up to terms of order OðDt2Þ. In order to obtain a fully explicit first
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order approximation of (h,u,v)(P), we would like to convert the mantle integrals on the LHS of (3.3)–(3.5)
into integrals over the sonic circle S0. One possibility would be, analogously to [23], to use the simple rectangle
rule
1

2ps

Z tnþs

tn

Z 2p

0

uð~t; hÞ dh d~t ¼ 1

2p

Z 2p

0

uðtn; hÞ dhþ OðDtÞ: ð3:19Þ
In the second step we can further eliminate derivatives over the sonic circle by means of the per-partes for-
mula, cf. Lemma 2.1 in [23]
~cs
2

1

2p

Z 2p

0

ðux þ wyÞ dh ¼ 1

2p

Z 2p

0

ðauþ bwÞ dhþ OðDt2Þ: ð3:20Þ
However, it has been shown in [23,27,28] that the application of classical quadrature rules, such as the rect-
angle rule in (3.19), are not well suited for approximation of discontinuous waves, which may propagate along
the mantle of the bicharacteristic cone. It resulted in a reduced stability range of the FVEG. In particular, if
the mantle integrals are approximated by the rectangle rule the CFL stability number was 0.63 and 0.56 for the
first and second order FVEG scheme, respectively; it is the so-called FVEG3 scheme, cf. [24]. In the recent
paper [27] new quadrature rules have been proposed for the mantle integrals. For example, if f = f(x) is a
piecewise constant function, then it was shown in [27] that
1

2p

Z 2p

0

f ðQÞ cos h dhþ 1

2p

Z tnþs

tn

1

tn þ s�~t

Z 2p

0

f ð~QÞ cos h d~t ¼ 1

2p

Z 2p

0

f ðQÞsgn cos h dh; ð3:21Þ
an analogous relation holds for f(Q)sinh. Similarly, the quadrature rules for bilinear data have been derived,
cf. Lemma A.1 in the Appendix of [27].

As a result new approximate evolution operators evaluate exactly each planar wave propagating either in
x- or y-directions and increase the stability range of the FVEG scheme substantially yielding the CFL number
close to 1.

Before we apply the quadrature rules proposed in [27], we approximate and simplify the exact integral equa-
tions (3.3)–(3.5). This is done in Lemma 3.2. Our strategy is to drop as many of the second order terms as
possible, but to keep all those terms which enter the balance of convective fluxes and source terms, i.e.
Kx = 0 = Ly, and are therefore needed for well-balancing. The remaining terms will be reformulated or
approximated up to the order OðDt2Þ in such a way, that the above mentioned quadrature rules from [27]
can be applied. Thus, we keep the balance conditions for source terms and at the same time we will be able
to approximate all resulting mantle integrals in a stable way.

Lemma 3.2. The following operator is a first order approximation of the exact integral equations (3.3)–(3.5)
hðPÞ ¼ �bðP Þ þ 1

2p

Z 2p

0

ðhðQÞ þ bðQÞÞ � ~c
g
ðuðQÞ cos hþ vðQÞ sin hÞ dh

� 1

2p

Z tnþs

tn

1

tn þ s�~t

Z 2p

0

~c
g
ðuð~QÞ cos hþ vð~QÞ sin hÞ dh d~t

þ 1

2p

Z tnþs

tn

Z 2p

0

ð~ubxð~QÞ þ ~vbyð~QÞÞ dh d~t þ OðDt2Þ; ð3:22Þ

uðPÞ ¼ 1

2p

Z 2p

0

� 1

~c
KðQÞ cos hþ uðQÞ cos2 hþ vðQÞ sin h cos h dh

þ 1

2
uðQ0Þ �

1

2p

Z tnþs

tn

1

tn þ s�~t

Z 2p

0

1

~c
Kð~QÞ cos h dh d~t

þ 1

2p

Z tnþs

tn

1

tn þ s�~t

Z 2p

0

ðuð~QÞ cos 2hþ vð~QÞ sin 2hÞ dh d~t þ OðDt2Þ; ð3:23Þ
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vðP Þ ¼ 1

2p

Z 2p

0

� 1

~c
LðQÞ sin hþ uðQÞ sin h cos hþ vðQÞ sin2 h dhþ 1

2
vðQ0Þ

� 1

2p

Z tnþs

tn

1

tn þ s�~t

Z 2p

0

1

~c
Lð~QÞ sin h dh d~t

þ 1

2p

Z tnþs

tn

1

tn þ s�~t

Z 2p

0

ðuð~QÞ sin 2h� vð~QÞ cos 2hÞ dh d~t þ OðDt2Þ: ð3:24Þ
The proof of this lemma is postponed to Appendix B. Now, in order to obtain time explicit approximate
evolution operators we approximate time integrals in (3.22)–(3.24).

The only integral which is not of the form (3.21) is the last term in (3.22). Here we apply the rectangle rule
(3.19) and get
1

2p

Z tnþs

tn

Z 2p

0

ð~ubxð~QÞ þ ~vbyð~QÞÞ dh d~t ¼ s
2p

Z 2p

0

ð~ubxðQÞ þ ~vbyðQÞÞ dhþ OðDt2Þ:
Moreover, for the special case when the bottom topography slopes bx,by are approximated by a piecewise con-
stant functions, which is the case of our bilinear recovery, for example, we can evaluate this term exactly.
Note, that ~u ¼ const:, ~v ¼ const:, and b = b(x,y) does not change in time. Thus, we have
1

2p

Z tnþs

tn

Z 2p

0

ð~ubxð~QÞ þ ~vbyð~QÞÞ dh d~t ¼ s
2p

Z 2p

0

ð~ubxðQÞ þ ~vbyðQÞÞ dh:
All other integrals are of the form (3.21), so we can apply numerical quadratures from [27]. They will be used
separately for constant and bilinear approximations. Thus, using (3.21) we get, analogously to [27], the
approximate evolution operator Econst

D using the piecewise constant approximate functions
hðP Þ ¼ �bðP Þ þ 1

2p

Z 2p

0

½ðhðQÞ þ bðQÞÞ � ~c
g
ðuðQÞsgnðcos hÞ þ vðQÞsgnðsin hÞÞ� dh

þ s
2p

Z 2p

0

ð~ubxðQÞ þ ~vbyðQÞÞ dh;

uðP Þ ¼ 1

2p

Z 2p

0

� 1

~c
KðQÞsgnðcos hÞ þ uðQÞ cos2 hþ 1

2

� �
þ vðQÞ sin h cos h

� �
dh;

vðP Þ ¼ 1

2p

Z 2p

0

� 1

~c
LðQÞsgnðsin hÞ þ uðQÞ sin h cos hþ vðQÞ sin2 hþ 1

2

� �� �
dh:

ð3:25Þ
For the piecewise bilinear ansatz functions the justification of the mantle integrals approximation is more in-
volved. The reader is referred to [27] for more details. Applying the approximations from [27] the approximate
evolution operator Ebilin

D reads
hðP Þ ¼ �bðP Þ þ hðQ0Þ þ bðQ0Þ þ
1

4

Z 2p

0

ðhðQÞ � hðQ0ÞÞ þ ðbðQÞ � bðQ0ÞÞ dh

� 1

p

Z 2p

0

~c
g

uðQÞ cos hþ ~c
g

vðQÞ sin h

� �
dhþ s

2p

Z 2p

0

ð~ubxðQÞ þ ~vbyðQÞÞ dh;

uðP Þ ¼ uðQ0Þ �
1

p

Z 2p

0

1

~c
KðQÞ cos h dhþ 1

4

Z 2p

0

3uðQÞ cos2 hþ 3vðQÞ sin h cos h� uðQÞ � 1

2
uðQ0Þ

� �
dh;

vðP Þ ¼ vðQ0Þ �
1

p

Z 2p

0

1

~c
LðQÞ sin h dhþ 1

4

Z 2p

0

3uðQÞ sin h cos hþ 3vðQÞ sin2 h� vðQÞ � 1

2
vðQ0Þ

� �
dh:

ð3:26Þ

The approximate evolution operators (3.25), (3.26) together with the finite volume update (2.14) define the
FVEG schemes. We will summarize the algorithm in Section 4.
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Let us pause for a moment and discuss the possible advantages of using the approximate evolution oper-
ators instead of the Taylor expansion (3.12) in the predictor step entering the finite volume update (2.14).

� The above approximate evolution operators does not rely upon any derivative of the unknowns (h,u,v),
while the Taylor expansion uses hx,hy,ux + vy. Therefore, (3.25), (3.26) are less dependent upon the recon-
struction of the piecewise constant solution than (3.12).
� The integrations along the cone in (3.3)–(3.5) take into account the whole domain of dependence. This may

result in a more robust algorithm, in particular for discontinuous solutions.

3.4. Well-balanced property of the approximate evolution operators

The aim of this subsection is to verify that the approximate evolution operators (3.25), (3.26) are well-bal-
anced for the lake at rest as well as for the jet in the rotational frame. The proof of Theorem 3.1 below is based
on the sufficient conditions for well-balancing formulated in Theorem 2.1.

Theorem 3.1. Suppose that the reconstructions at time tn satisfy for all (x, y)
unðx; yÞ � 0; ð3:27Þ
oyvnðx; yÞ � 0; ð3:28Þ
lxv

nðx; yÞoyh
nðx; yÞ � 0; ð3:29Þ

oxKnðx; yÞ � 0; ð3:30Þ
oyLnðx; yÞ � 0: ð3:31Þ
Then the approximate EG predictor steps defined by (3.25), (3.26) satisfy the conditions for well-balancing of The-
orem 2.1.

Therefore, the FVEG schemes based on the above approximate evolution operators are well-balanced for the

lake at rest and the jet in the rotational frame.

Proof. We prove here that the approximate evolution operator for piecewise constant data Econst
D , see (3.25),

satisfies conditions (2.24)–(2.28) of Theorem 2.1. The proof for the approximate evolution operator for piece-
wise bilinear data Ebilin

D , see (3.26), is analogous.
First we use conditions (3.27)–(3.31) to simplify the approximate evolution operator (3.25). Due to (3.27)

and (3.28)
1

2p

Z 2p

0

uðQÞsgnðcos hÞ dh ¼ 1

2p

Z 2p

0

vðQÞsgnðsin hÞ dh ¼ 0:
Similarly,
1

2p

Z 2p

0

KðQÞsgnðcos hÞ dh ¼ 1

2p

Z 2p

0

LðQÞsgnðsin hÞ dh ¼ 1

2p

Z 2p

0

vðQÞ sin h cos h dh ¼ 0;
while
1

2p

Z 2p

0

vðQÞ sin2 hþ 1

2

� �
dh ¼ 1

2
ðvL þ vRÞ:
Due to (3.31), (2.24) and (3.29)
1

2p

Z 2p

0

~vbyðQÞ dh ¼ � 1

2p

Z 2p

0

~vhyðQÞ dh ¼ 0: ð3:32Þ
Using the above identities in (3.25) gives the simplified approximate evolution operator, valid for the jet in the
rotational frame
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ĥðP Þ ¼ �bðP Þ þ 1

2p

Z 2p

0

ðhðQÞ þ bðQÞÞ dh;

ûðP Þ ¼ 0;

v̂ðP Þ ¼ 1

2
ðvL þ vRÞ:

ð3:33Þ
From this, (2.24), (2.25) and (2.28) follow immediately. To verify (2.26), we set P0 :¼ P � (0,0,s) (the projec-
tion of P onto the plane t ” tn) and compute
v̂ðP Þoy ĥðP Þ ¼ v̂ðP Þoy �bðPÞ þ 1

2p

Z 2p

0

ðhðQÞ þ bðQÞÞ dh

	 

¼ �v̂ðPÞoybðP 0Þ

¼ �v̂ðPÞoyððhðP 0Þ þ bðP 0ÞÞ � hðP 0ÞÞ ¼ v̂ðPÞoyhðP 0Þ ¼ 0:
It remains to prove that (2.27) holds. Since K = g(h + b � V),
K̂ðP Þ ¼ gðĥðP Þ þ bðPÞ � V nþ1=2ðP ÞÞ ¼ g
2p

Z 2p

0

ðhnðQÞ þ bðQÞ � V nðQÞÞ þ g
2p

Z 2p

0

V nðQÞ dh� gV nþ1=2ðP Þ

¼ 1

2p

Z 2p

0

KnðQÞ dhþ g
2p

Z 2p

0

V nðQÞ dh� gV nþ1=2ðP Þ:
Differentiating this equation with respect to x and applying (2.12) implies
oxK̂ðP Þ ¼
1

2p

Z 2p

0

oxKnðQÞ dhþ g
2p

Z 2p

0

oxV nðQÞ dh� goxV nþ1=2ðP Þ ¼ f
2p

Z 2p

0

vnðQÞ dh� f v̂ðP Þ

¼ f
vR þ vL

2
� f

vR þ vL

2
¼ 0;
which is the well-balanced condition (2.27) and concludes the proof. h
4. Summary of the FVEG algorithm

In this section we summarize the main steps of the FVEG method by presenting the algorithm for the first
and second order scheme including the effects of bottom topography as well as the Coriolis forces.

Algorithm 1

1. Given are piecewise constant approximations at time tn: hn
ij; u

n
ij; v

n
ij; i; j 2 Z, the bottom topography b(x,y),

mesh and time steps �h, Dt and constants g, f; compute
bn
ij ¼ bðxi; yj; t

nÞ;

V n
ij ¼

f
g

�h
Xi

i0¼i0

vn
i0�1;j þ vn

i0j

2
;

Un
ij ¼

f
g

�h
Xj

j0¼j0

un
i;j0�1 þ un

ij0

2
:

2. Recovery step:
If the scheme is second order, do the recovery step. For smooth parts of solution apply the continuous bilin-
ear recovery, cf. [26]. Possible overshoots on discontinuities are limited, e.g. by the minmod limiter; cf. [26].
This yields the piecewise bilinear approximations R�hhn, R�hun, R�hvn, R�hbn, R�hUn, R�hVn.

3. Predictor step/approximate evolution:

Compute the intermediate solutions at time level tn+1/2 on the cell interfaces by the approximate evolution
operators. For the first order scheme use the approximate evolution operator Econst

D (3.25); the second order
scheme is computed using both approximate evolution operators Econst

D (3.25) as well as Ebilin
D (3.26), cf. (3.1).

Integration along the cell interfaces is realized numerically by the Simpson rule.
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4. Corrector step/FV-update:

Compute the Coriolis forces and the bottom topography at the intermediate time level tn+1/2 and at each
integration points on cell interfaces, i.e. at vertices and midpoints:
Table
The L1

Metho

First o
Second
bnþ1=2
k‘ ¼ bðxk; y‘Þ; k ¼ i; i� 1=2; ‘ ¼ j; j� 1=2;

V nþ1=2
iþ1=2;‘ ¼

f
g

�h
Xi

i0¼i0

vnþ1=2
i�1=2;‘ þ vnþ1=2

iþ1=2;‘

2
; ‘ ¼ j; j� 1=2;

U nþ1=2
k;jþ1=2 ¼

f
g

�h
Xj

j0¼j0

unþ1=2
k;j�1=2 þ unþ1=2

kjþ1=2

2
; k ¼ i; i� 1=2:
Do the FV-update (2.14) using the well-balanced approximation of the source terms (2.21).
5. Numerical experiments

One interesting steady state, which should be correctly resolved by a well-balanced scheme, is the stationary
steady state, i.e. h + b = const. and u = 0 = v. In this section we demonstrate well-balanced behaviour of the
proposed FVEG schemes through several benchmark problems for stationary and quasi-stationary states, i.e.
h + b 	 const. and u 	 0 	 v; see [17,20] for related results in the literature. Further, we present results for
steady jets including effects of the Coriolis forces and show that the FVEG scheme is well-balanced also
for this nontrivial steady state. At the end of this section we compare accuracy and computational time of
the well-balanced FVEG method and the well-balanced second and fourth order FVM of Audusse et al. [2]
and Noelle et al. [31].

5.1. One-dimensional stationary and quasi-stationary states

In this experiment we have tested the preservation of a stationary steady state as well as the approximation
of small perturbations of this steady state. The bottom topography consists of one hump
bðxÞ ¼
0:25ðcosð10pðx� 0:5ÞÞ þ 1Þ if jx� 0:5j < 0:1;

0 otherwise

	

and the initial data are u(x, 0) = 0,
hðx; 0Þ ¼
1� bðxÞ þ e if 0:1 < x < 0:2;

1� bðxÞ otherwise:

	

The parameter e is chosen to be 0, 0.2 or 0.01. The computational domain is the interval [0,1] and absorbing
boundary conditions have been implemented by extrapolating all variables. The gravitational constant g was
set to 1 analogously as in [17,20]. It should be pointed out that the one-dimensional problems are actually
computed by a two-dimensional code by imposing zero tangential velocity v = 0.

Firstly, we test the ability of the FVEG scheme to preserve the stationary steady state, i.e. the lake at rest
case, by taking e = 0. In Table 1 the L1-errors for different times computed with the first order FVEG method,
cf. (3.25), and with the second order FVEG method, cf. (3.26), are presented. Although we have used a rather
coarse mesh consisting of 20 · 20 mesh cells, it can be seen clearly that the FVEG scheme balances up to the
machine accuracy also for long time computations.
1
-error of the well-balance FVEG scheme using 20 · 20 mesh cells

d t = 0.2 t = 1 t = 10

rder FVEG 0 0 2.22 · 10�16

order FVEG 1.67 · 10�17 1.11 · 10�17 4.27 · 10�16
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Fig. 2. Propagation of small perturbations, e = 0.2.
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In Fig. 2 the typical propagation of small height perturbations is shown at time t = 0.7. The solution is
computed on a mesh with 100 · 5 cells and the height of the initial perturbation was e = 0.2. The initial dis-
turbance generates two waves, the left-going wave runs out of the computational domain, and the right-going
wave passes the bottom elevation obstacle. It is known that if the perturbations are relatively large in compar-
ison to the discretization error a ‘‘naive’’ approximation of the source term, i.e. not well-balanced scheme, e.g.
the fractional step method, can still yield reasonable approximations. However, for small perturbations, i.e. e
of order of the discretization errors, such a scheme would yield strong oscillations over the bottom hump and
the wave of interest will be lost in the noise, see [20].

In Fig. 3 we compare results for water depth h at time t = 0.7 obtained by the first and second order FVEG
methods using the minmod limiter and the monotonized centered limiter (denoted as MNC), respectively. In
the left picture e = 0.2, the right picture shows results for e = 0.01. The reference solutions was obtained by the
second order FVEG method with the minmod limiter on a mesh with 10,000 cells. For the first order scheme
and the second order scheme with minmod limiter we can notice correct resolution of small perturbations of
the stationary steady state even if the perturbation is of the order of the truncation error. The MNC limiter
resolves the peak much more sharply, but overcompress the left-going wave. This is a well-known feature of
compressive limiters, see e.g. the discussion in [18,21,33].

5.2. Two-dimensional quasi-stationary problem

The second example is a two-dimensional analogue of the previous one. The bottom topography is given by
the function
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Fig. 3. Propagation of small perturbations, magnified view; e = 0.2 (left) and e = 0.01 (right).
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bðx; yÞ ¼ 0:8 expð�5ðx� 0:9Þ2 � 50ðy � 0:5Þ2Þ ð5:34Þ

and the initial data are
hðx; y; 0Þ ¼
1� bðx; yÞ þ e if 0:05 < x < 0:15;

1� bðx; yÞ otherwise;

	
uðx; y; 0Þ ¼ vðx; y; 0Þ ¼ 0:

ð5:35Þ
The parameter e is set to 0 and 0.01. The computational domain is [0, 2] · [0,1] and the absorbing extrapola-
tion boundary condition are used.

First, we take e = 0 and test the preservation of a two-dimensional lake at rest on a mesh with 20 · 20 mesh
cells, see Table 2. Analogously to the one-dimensional case this steady state is preserved up to the machine
accuracy. In Fig. 4 we present two solutions of a perturbed problem, e = 0.01, which are computed on a
200 · 100 grid (left) and on a 600 · 300 grid (right) by the second order FVEG scheme with the minmod lim-
iter. Notice that the FVEG method correctly approximates small perturbed waves, the perturbation propa-
gates over the bottom hump without any oscillations. Note that the wave speed is slower over the hump,
which leads to a distortion of the initially planar perturbation. The perturbed wave runs out of the computa-
tional domain and the flat surface is obtained at the end. Our results are in a good agreement with other results
presented in the literature, cf., e.g. [17,20,31,34].

5.3. Steady jet in the rotational frame

This is a classical Rossby adjustment of an unbalanced jet in an open domain, see e.g. [5]. The initial data
are a rest state superimposed by a one-dimensional jet,
hðx; y; 0Þ ¼ 1:0; uðx; y; 0Þ ¼ 0; vðx; y; 0Þ ¼ 2NLðxÞ;

where the shape of the velocity v is given by a smooth profile
NLðxÞ ¼
ð1þ tanhð4x=Lþ 2ÞÞð1� tanhð4x=L� 2ÞÞ

ð1þ tanhð2ÞÞ2
with L = 2. We have used flat bottom topography b(x) = 0, the parameter of the Coriolis forces f and the grav-
itational acceleration g are set to 1. The non-dimensional parameter representing the effects of Coriolis forces,
the Rossby number Ro ¼ jvðx;y;0ÞjfL ¼ 1 and the Burgers number reflecting the nonlinear effects is

Bu ¼ gjhðx;y;0Þj
f 2L2 ¼ 0:25: The initial jet adjusts a momentum unbalance, which emits the waves, the so-called grav-

ity waves, propagating out from the jet. The formation of shocks can be noticed within the jet core approx-
imately at p/f, which is a half of a natural time scale Tf = 2p/f, see Figs. 5 and 6. As time is evolved the solution
tends to the equilibrium state fv = ghx, which is a geostrophic balance as demonstrated in Fig. 7. We can notice
that even for long time simulations there are still small oscillations around the geostrophic equilibrium. As
pointed out by Bouchut et al. [5] some wave modes with the frequencies close to f remain for a longer time
in the core of the jet. Their analysis for a linearized situation shows that they correspond to the gravity wave
modes having almost zero group velocity, and thus are almost not propagating. For another extensive study of
the stability of jets, which gives interesting eigenfunctions similar to those in Fig. 5 we refer to [11].

5.4. Accuracy and performance

In this experiment we compare accuracy and computational time of the well-balanced FVEG, the second
order well-balanced FV method of Audusse et al. [2] and its fourth order extension due to Noelle et al. [31].
2
-error of the well-balance FVEG scheme using 20 · 20 mesh cells

d t = 0.2 t = 1 t = 10

rder FVEG 2.35 · 10�17 5.09 · 10�17 5.02 · 10�17

order FVEG 4.97 · 10�17 6.74 · 10�17 1.53 · 10�16



Fig. 4. Two-dimensional quasi-stationary problem (5.34), (5.35).
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We choose a fully two-dimensional experiment analogous to that of Xing and Shu [34], but include moreover
the effect of Coriolis forces by setting f = 10. The gravitational constant was set to g = 9.812. The bottom
topography and the initial data are given as follows:
bðx; yÞ ¼ sinð2pxÞ þ cosð2pyÞ;
hðx; y; 0Þ ¼ 10þ expðsinð2pxÞÞ cosð2pyÞ;
huðx; y; 0Þ ¼ sinðcosð2pxÞÞ sinð2pyÞ;
hvðx; y; 0Þ ¼ cosð2pxÞ cosðsinð2pyÞÞ:
The computational domain [0,1] · [0, 1] was consecutively divided into 25,50, . . . , 800 mesh cells in each direc-
tion. We have compared solutions obtained by the second order FVEG scheme as well as by the second order
and fourth order well-balanced FVM at time T = 0.05. For the second order well-balanced FVM of Audusse
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Fig. 5. One-dimensional Rossby adjustment problem, time evolution of water height.
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et al. the second order Runge–Kutta method was used for time integration, the third order Gaussian quadra-
ture was used for cell-interface integrals of fluxes and the second order WENO recovery was applied. The ref-
erence solution was obtained by the fourth order well-balanced FV method of Noelle et al. [31].

Tables 3 and 4 contain the L1 errors and experimental order of convergence (EOC) for the FVEG for both
CFL numbers 0.8 as well as 0.5, respectively. The well-balanced higher order directional splitting FVM is in
general stable up to CFL = 0.5. The L1 errors for its second order version are presented in Table 5. We can
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Fig. 7. One-dimensional Rossby adjustment problem at different times, geostrophic balance.

Table 3
FVEG scheme: convergence in the L1 norm, CFL = 0.8

N L1 error in h EOC L1 error in hu EOC L1 error in hv EOC

25 1.04e � 02 3.56e � 02 8.52e � 02
50 2.42e � 03 2.10 8.71e � 03 2.03 2.15e � 02 1.99

100 6.01e � 04 2.01 2.23e � 03 1.96 5.50e � 03 1.96
200 1.54e � 04 1.96 5.76e � 04 1.95 1.44e � 03 1.93
400 3.97e � 05 1.96 1.47e � 04 1.97 3.69e � 04 1.96
800 1.02e � 05 1.97 3.71e � 05 1.98 9.40e � 05 1.97
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Fig. 8 illustrates the CPU/accuracy behaviour graphically. We use the logarithmic scale on x-, y-axis. On
the y-axis the L1 errors in first component h is depicted. Errors in other components yield analogous results.
On the left of Fig. 8 a comparison between second order FVEG and FV methods is presented, whereas on the
right we show the comparison between the fourth order well-balanced FVM of Noelle [31] and the second
order FVEG scheme. The FVEG schemes yields on coarse meshes still more accurate solutions. In fact, for
meshes up to approximately 100 · 100 cells, which are actually often used for practical computations, it is
more efficient to use the second order FVEG scheme than the fourth order FVM. The superiority of the fourth
order scheme is showing up on fine grids, see the right graph of Fig. 8.



Table 4
FVEG scheme: convergence in the L1 norm, CFL = 0.5

N L1 error in h EOC L1 error in hu EOC L1 error in hv EOC

25 1.37e � 02 6.19e � 02 1.18e � 01
50 2.80e � 03 2.29 1.05e � 02 2.56 2.33e � 02 2.34

100 5.23e � 04 2.42 1.80e � 03 2.54 4.25e � 03 2.45
200 1.04e � 04 2.33 3.63e � 04 2.31 8.12e � 04 2.39
400 2.45e � 05 2.09 8.79e � 05 2.05 1.80e � 04 2.17
800 6.14e � 06 1.99 2.20e � 05 2.00 4.36e � 05 2.04

Table 5
FV scheme: convergence in the L1 norm, CFL = 0.5

N L1 error in h EOC L1 error in hu EOC L1 error in hv EOC

25 4.53e � 02 2.13e � 01 3.40e � 01
50 1.32e � 02 1.77 5.57e � 02 1.94 9.51e � 02 1.84

100 3.50e � 03 1.92 1.42e � 02 1.97 2.52e � 02 1.92
200 8.95e � 04 1.97 3.58e � 03 1.99 6.46e � 03 1.96
400 2.26e � 04 1.99 8.96e � 04 2.00 1.63e � 03 1.99
800 5.67e � 05 1.99 2.24e � 04 2.00 4.10e � 04 1.99
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Fig. 8. Efficiency test: L1 error over the CPU time; the second order FVEG and second order FV schemes (left) as well as the fourth order
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We should point out that no attempt has been made in order to optimize the codes with respect to their
CPU performance. Our extensive numerical treatment indicates that both well-balanced second order meth-
ods, the FVEG as well as the FVM are actually comparable with respect to their computational time.

6. Conclusions

In the present paper we have developed a new well-balanced scheme within the framework of the finite
volume evolution Galerkin (FVEG) scheme. The scheme is applied for the shallow water equations with
source terms modelling the bottom topography and the Coriolis forces. The key ingredient of this FVEG
scheme is a new well-balanced approximate representation of the solution, cf. Lemma 3.2, which together
with a recent quadrature rule from [27] leads to the multidimensional approximate evolution operators
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(3.25), (3.26). These approximate evolution operators are used in a predictor step. In fact we are predicting
the solution at cell interfaces and do not need to use the hydrostatic reconstruction as it is done by Audusse
et al. [2].

In the following correction step, which is the finite volume update step, the source term is approximated in
the interface-based way. We have proved that the lake at rest, the steady jet in the rotational frame as well as
their combinations are preserved, cf. Theorems 2.1 and 3.1. Numerical experiments in one and two space
dimensions demonstrate correct resolution of these equilibrium states and of their small perturbations. For
smooth solutions the accuracy of the well-balanced FVEG scheme is superior to that of a recent FV scheme
while the CPU time is comparable.

In future work we want to extend our well-balanced schemes to shallow water equations with nonlinear
friction, which appears in oceanographic as well as river flow modelling. Another challenge is presented by
multi-layer shallow water models, which are important in oceanology, meteorology and climatology.
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Appendix A. Derivation of the exact integral equations

Applying theory of bicharacteristics to (3.2) we can derive exact integral equations in an analogous way as
in [27]. In order to keep the presentation self-contained we briefly rewrite main steps of the derivation.

Let R be the matrix of right eigenvectors corresponding to direction n :¼ (cos(h), sin(h)). Its inverse reads
R�1 ¼ 1

2

�1 ~c
g cos h ~c

g sin h

0 2 sin h �2 cos h

1 ~c
g cos h ~c

g sin h

0
B@

1
CA:
Let us define the vector of characteristic variables v by
v :¼ R�1w:
Multiplying system (3.2) by R�1 from the left yields the following characteristic system
ov

ot
þ B1ð~vÞ

ov

ox
þ B2ð~vÞ

ov

oy
¼ r;
where
B1 ¼
~u� ~c cos h � 1

2
~h sin h 0

�g sin h ~u g sin h

0 1
2
~h sin h ~uþ ~c cos h

0
B@

1
CA;

B2 ¼
~v� ~c sin h 1

2
~h cos h 0

g cos h ~v �g cos h

0 � 1
2
~h cos h ~vþ ~c sin h

0
B@

1
CA;

rðnÞ ¼
r1

r2r3

� �
¼ R�1ðnÞt ¼

1
2

~c
g ðð�gbx þ fvÞ cos h� ðgby þ fuÞ sin hÞ
ð�gbx þ fvÞ sin hþ ðgby þ fuÞ cos h

1
2

~c
g ðð�gbx þ fvÞ cos h� ðgby þ fuÞ sin hÞ

0
B@

1
CA

ðA:1Þ
and the characteristic variables v are
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vðnÞ ¼
v1

v2

v3

0
B@

1
CA ¼ R�1ðnÞu ¼

1
2
�hþ ~c

g u cos hþ ~c
g v sin h

� �
u sin h� v cos h

1
2

hþ ~c
g u cos hþ ~c

g v sin h
� �

0
BB@

1
CCA:
The quasi-diagonalised system of the linearized shallow water equations has the following form
ov

ot
þ

~u� ~c cos h 0 0

0 ~u 0

0 0 ~uþ ~c cos h

0
B@

1
CA ov

ox
þ

~v� ~c sin h 0 0

0 ~v 0

0 0 ~vþ ~c sin h

0
B@

1
CA ov

oy
¼ sþ r ðA:2Þ
with
s ¼
s1

s2

s3

0
B@

1
CA ¼

1
2
~h sin h ov2

ox þ cos h ov2

oy

� �
g sin h ov1

ox �
ov3

ox
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� g cos h ov1

oy �
ov3

oy

� �
1
2
~h cos h ov2

ox � sin h ov2

oy

� �

0
BBBB@

1
CCCCA:
Let us denote by x‘ the ‘th bicharacteristic corresponding to the ‘th equation of system (A.2). The bicharac-
teristic x‘ is defined in the following way
dx‘ðsÞ
ds

¼ b1
‘‘

b2
‘‘

 !
;

where b1
‘‘; b2

‘‘ are the diagonal entries of the matrices B1,B2, respectively. The bicharacteristics x‘ create the
surface of the so-called bicharacteristic cone, see Fig. 1, with the apex P = (x,y,tn + s) and the footpoints
Q1ðhÞ ¼ ðx� ð~u� ~c cos hÞs; y � ð~v� ~c sin hÞs; tnÞ;
Q2 � Q0 ¼ ðx� ~us; y � ~vs; tnÞ;
Q3ðhÞ ¼ ðx� ð~uþ ~c cos hÞs; y � ð~vþ ~c sin hÞs; tnÞ:
Remember that s = Dt/2 in our case. Integrating each equation of (A.2) along the corresponding bicharacter-
istic from the apex P down to the footpoints Q‘ we get
v‘ðP Þ ¼ v‘ðQ‘Þ þ
Z tnþs

tn

s‘ðQ‘ð~tÞÞ þ r‘ðQ‘ð~tÞÞ d~t; ‘ ¼ 1; 2; 3: ðA:3Þ
Now multiplying (A.3) with R from the left and averaging over all directions we go back to the original vari-
ables w
wðP Þ ¼ 1

2p

Z 2p

0

�v1ðQ1ðhÞ; hÞ þ v3ðQ3ðhÞ; hÞ
g
~c cos hv1ðQ1ðhÞ; hÞ þ sin hv2ðQ2ðhÞ; hÞ þ g

~c cos hv3ðQ3ðhÞ; hÞ
g
~c sin hv1ðQ1ðhÞ; hÞ � cos hv2ðQ2ðhÞ; hÞ þ g

~c sin hv3ðQ3ðhÞ; hÞ

0
B@

1
CAdh

þ 1

2p

Z 2p

0

�s01ðhÞ � r01ðhÞ þ s03ðhÞ þ r03ðhÞ
g
~c cos hðs01ðhÞ þ r01ðhÞÞ þ sin hðs02ðhÞ þ r02ðhÞÞ þ

g
~c cos hðs03ðhÞ þ r03ðhÞÞ

g
~c sin hðs01ðhÞ þ r01ðhÞÞ � cos hðs02ðhÞ þ r02ðhÞÞ þ

g
~c sin hðs03ðhÞ þ r03ðhÞÞ

0
B@

1
CAdh; ðA:4Þ
where s0‘ðhÞ ¼
R tnþs

tn
s‘ðx‘ð~t; hÞ;~t; hÞ d~t is an integral along the ‘th bicharacteric and the analogous notation

holds for source terms r‘. It should be noted that the source term s‘ in (A.3) arrives from to the multidimen-
sionality of the system, whereas the source term r‘ is a physical source term.

Now, we have k1 = �k3, Q1(h + p) = Q3(h) and the characteristic variables v‘ are 2p-periodic. Applying the
Gauss integration, cf. (3.20), in order to avoid the derivatives of dependent variables appearing in s we can,
after analogous computations as in [23,27], reformulate the exact integral equations (A.4) in the following way
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hðPÞ ¼ 1
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Z 2p
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Recall that ~Q0 ¼ ðx� ~uðtn þ s�~tÞ; y � ~vðtn þ s�~tÞ;~tÞ, ~Q ¼ ðx� ~uðtn þ s�~tÞ þ cðtn þ s�~tÞ cos h; y �
~vðtn þ s�~tÞ þ cðtn þ s�~tÞ sin h;~tÞ stays for an arbitrary point on the mantle and Q ¼ Qð~tÞj~t¼tn

denotes a point
at the perimeter of the sonic circle at time tn.
Appendix B. Proof of Lemma 3.2

Proof. We show here that the approximate integral equations (3.22)–(3.24) are consistent with the exact
integral equations (3.3)–(3.5), i.e. (A.5)–(A.7). In (3.3) the integral with bottom topography terms can be
rewritten using the polar-type transformation along the mantle of the bicharacteristic cone, i.e.
x~Q ¼ xþ rðcos h� ~u

~cÞ; y ~Q ¼ y þ rðsin h� ~v
~cÞ, where r ¼ ~cðtn þ s�~tÞ is the circle radius at the time level

~t 2 ½tn; tn þ s�. Thus, we have
db
dr
ðr; hÞ ¼ bxðx~Q; y ~QÞ cos hþ byðx~Q; y ~QÞ sin h� 1

~c
ð~ubxðx~Q; y ~QÞ þ ~vbyðx~Q; y ~QÞÞ:
Therefore,
~c
2p

Z tnþs

tn

Z 2p

0

ðbxð~QÞ cos hþ byð~QÞ sin hÞ dh d~t

¼ ~c
2p

Z 0

~cs

Z 2p

0

dbðr; hÞ
dr

dh � dr
~c

� �
þ 1

2p

Z tnþs

tn

Z 2p

0

~ubxð~QÞ þ ~vbyð~QÞ dh d~t
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¼
Z ~cs

0

d

dr
1

2p

Z 2p

0

b dh

� �
dr þ 1

2p

Z tnþs

tn

Z 2p

0

~ubxð~QÞ þ ~vbyð~QÞ dh d~t

¼ 1

2p

Z 2p

0

bðQÞ dh� bðP Þ þ 1

2p

Z tnþs

tn

Z 2p

0

~ubxð~QÞ þ ~vbyð~QÞ dh d~t; ðB:1Þ
which yields the corresponding terms in (3.22).
Further, we show that the integrals in (3.3) containing the Coriolis forces are of order OðDt2Þ; note that

s = Dt/2. Applying the rectangle rule in time and the Taylor expansion from Lemma 3.1 in the center of the
sonic circle Q0 yields
Z tnþs

tn

Z 2p

0

vð~QÞ cos h dh d~t ¼ s
Z 2p

0

vðQÞ cos h dh

¼ s
Z 2p

0

ðvðQ0Þ cos hþ csvxðQ0Þ cos2 hþ csvyðQ0Þ cos h sin hþ OðDt2ÞÞ dh

¼ OðDt2Þ ðB:2Þ

with an analogous approximation for the Coriolis forces in y-direction. Together with (B.1) and (B.2) this
yields the approximate integral equation (3.22).

In Eq. (3.4) for velocity u we apply for the mantle integrals containing the bottom elevation terms the rectangle
rule in time and the Taylor expansion over the center Q0 of the sonic circle S0 at time tn, which lead to
1

2p
g
Z tnþs

tn

Z 2p

0

ðbxð~QÞ cos hþ byð~QÞ sin hÞ cos h dh d~t ¼ gs
2

bxðQ0Þ þ OðDt2Þ: ðB:3Þ
To complete we eliminate the derivative by replacing the term bx(Q0) by its average over the sonic circle S0 and
applying the Gauss theorem
bxðQ0Þ ¼
1

p~c2Dt2

Z
S0

bxðQÞ dx dy þOðDt2Þ ¼ 1

p~cs

Z 2p

0

bðQÞ cos h dhþ OðDt2Þ; ðB:4Þ
which after substitution into (B.3) yields
1

2p
g
Z tnþs

tn

Z 2p

0

ðbxð~QÞ cos hþ byð~QÞ sin hÞ cos h dh d~t ¼ g
~c

1

2p

Z 2p

0

bðQÞ cos h dhþ OðDt2Þ: ðB:5Þ
Rewriting the Coriolis forces terms using their primitives we obtain analogously to (B.3) and (B.4)
f
2p

Z tnþs

tn

Z 2p

0

ðvð~QÞ cos2 h� uð~QÞ sin h cos hÞ dh d~t

¼ g
2p

Z tnþs

tn

Z 2p

0

ðV xð~QÞ cos h� Uyð~QÞ sin hÞ cos h dh d~t ¼ g
~c

1

2p

Z 2p

0

V ðQÞ cos h dhþ OðDt2Þ: ðB:6Þ
This balances together with (B.5) the analogous term with h(Q) cosh in (3.4). The integral along the middle
bicharacteristic
g
2

Z tnþs

tn

ðhxð~Q0Þ þ bxð~Q0Þ �
f
g

vð~Q0ÞÞ d~t ¼ g
2

Z tnþs

tn

ðhxð~Q0Þ þ bxð~Q0Þ � V xð~Q0ÞÞ d~t
can be approximated in a similar way as (B.4) applying the Gauss theorem at each intermediate circular sec-
tion at ~t along the mantle of the bicharacteristic cone. Substituting into (3.4) gives (3.23). Approximation
(3.24) for the velocity v is obtained in an analogous way as (3.23). h
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[22] M. Lukáčová-Medvid’ová, Multidimensional bicharacteristics finite volume methods for the shallow water equations, in: R. Hérbin,
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[24] M. Lukáčová-Medvid’ová, K.W. Morton, G. Warnecke, On high-resolution finite volume evolution Galerkin schemes for genuinely

multidimensional hyperbolic conservation laws, in: Onate et al. (Eds.), European Congress on Computational Methods in Applied
Sciences and Engineering, ECCOMAS 2000, CIMNE 2000, pp. 1–14.
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